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Abstract 

In this paper, the wire coating analysis in MHD flow and heat transfer of a third grade fluid with variable 

viscosity in a porous medium with internal heat generation/absorption and Joule heating has been 

investigated. In the present study wire coating is carried out using melt polymer satisfying third grade fluid 

model. In the present discussion (i) Reynolds Model (ii) Vogel’s Model are considered to account for 

temperature dependent viscosity. The boundary layer equations governing the flow and heat transfer 

phenomena are solved numerically by employing fourth order Runge-Kutta method and the effects of 

pertinent parameters such as permeability parameter, internal heat generation/absorption parameter and 

temperature dependent viscosity parameters on wire coating have been analyzed and are displayed with the 

help of graphs. It is important to remark that an increase in non-Newtonian parameter increases the velocity 

in the absence of porous matrix which agrees well with the results reported earlier but in the presence of 

porous matrix the velocity decreases in the entire span of the flow domain. One of the important aspects of 

the present study is that thermal boundary layer generates energy which causes an enhancement in 

temperature with an increase in heat generation parameter whereas for the case of heat absorption, the 

temperature falls. Further, the flow instability in the flows of extrusion die is well marked in case of 

Vogel’s model as pointed out by Nhan-Phan-Thien. 

Keywords: Wire coating, Third grade fluid, Porosity, Heat generation/absorption. 

1. Introduction 

Investigation on boundary-layer behaviour of a viscoelastic fluid over a continuously 

stretching surface finds many important applications in polymeric extrusion, drawing of plastic 

films and wires. The ever increasing applications in these industrial processes have led to renewed 

interest in the study of viscoelastic fluid flow and heat transfer in the wire coating process. Wire 

coating process is an industrial process to coat a wire for insulation, mechanical strength and 

environmental safety.  Usually, three different processes are used for wire coating. They are such 

as 

 Coaxial extrusion process 

 Dipping process and 

 Electro-statistical deposition process 

The co-extrusion process operates at maximum possible pressure, temperatures and speeds. 

In this process of coating, the velocity of continuum and the melt polymer develop high pressure in 

a specific region which in turn produces strong bonding and imparts fast coating. The co-extrusion 

process studied by Han and Rao [1], Caswell and Tanner [2], Tucker [3], Nayak [4] is an operation 

in which either the polymer is extruded on axially moving wire or the wire is dragged inside a die 
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filled with molten polymer. The efficiency of coextrusion process can be enhanced by adopting 

hydrodynamic model by Akter and Hashmi [5]. The experimental set-up of a typical wire coating 

process is shown in Fig.1. 

         

Fig. 1 Typical wire coating process. 

In this set-up, the uncoated wire unwinds at the payoff reel passing through straightener, a 

preheater, a cross head die where it meets the melt polymer and emerges from the extruder and 

gets coated. This coated wire then passes through a cooling through, a capstan (puller) and a tester 

and is finally ends on the rotating take-up reel. The co-extrusion process is simple to apply, time 

saving and economical in view of industrial applications. Many researchers namely Tadmor and 

Gogos [6], Fata et al. [7], Siddiqui et al. [8] have therefore analyzed wire coating using third grade 

fluid.In wire coating, the quality of material and wire drawing velocity are important within the 

die. After leaving the die, the temperature of the coating material is also important. 

Nomenclature 

wR  radius of the wire     density of the fluid 

wU  wire velocity     p  pressure 

w  wire temperature    F  viscous force per unit volume 

L  length of die    k  thermal conductivity   

dR  radius of die    pC  specific heat at constant pressure 

d  flow temperature     dissipation function  

0B  strength of uniform transverse J  current density 

 magnetic field    q  velocity of fluid    

B  magnetic field  

S  extra stress tensor     electrical conductivity  

  fluid temperature   
0  non-Newtonian parameter/ perturbation  

pK  permeable parameter    parameter 

  coefficient of Viscosity  M  magnetic parameter    

  dynamic viscosity    Q  heat generation/absorption parameter       

Third-grade fluid considered here represents a viscoelastic fluid of industrial importance. 

Many fluids used in wire-coating exhibit the characteristics of third grade fluid. Many authors [9]-

[11] have studied in the field of third grade fluid. Recently, a visco-elastic fluid model known as 

Phan-Thien-Tanner (PTT) model is widely used for wire coating. It is a non-linear viscoelastic 

model which incorporates not only shear thinning, shear viscosity and normal stress difference but 

also an elongational parameter and so reproduces many of the characteristics of the rheology of 
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polymer solutions and other non-Newtonian fluids. Many authors have contributed to enrich the 

field of heat transfer of post-treatment analysis of wire coating. Kasajima and Ito [12] have worked 

on post-treatment of polymer extrudate in wire coating. They also performed a heat transfer 

analysis for the cooling of the coating. Wagner and Mitsoulis [13] have studied the effect of die 

design on the analysis of wire coating.  

Bagley and Storey [14] provided numerical solutions for a Newtonian fluid in the form of 

dimensionless parameters characterizing the wire speed, die dimensions, radial position, shear 

rate, and melt viscosity. Tadmor and Bird [15] examined the effect of visco-elasticity on the 

eccentricity of the wire. Using the Criminale-Ericksen-Filbey (CEF) constitutive equation, they 

concluded that the lateral forces acting on the wire tend to stabilize it into a concentric position. 

The properties of the final product are known to depend greatly on the rate of cooling in 

manufacturing processes. The central cooling system is beneficial to facilitate the process for a 

designed product. An electrically conducting polymeric liquid seems to be a good candidate for 

some industrial applications such as in polymer technology and extrusion processes because the 

flow can be regulated by external means through a magnetic field. The applied magnetic field may 

play an important role in controlling momentum and heat transfer in the boundary layer flow of 

different fluids in the process of wire coating. The study of flow and heat transfer in porous media 

has received much attention due to its enormous applications in diversified industries and 

contemporary technology. Porous materials can be used to enhance the heat transfer from the 

surface of the wire. In view of this, many authors have explored the effect of transverse magnetic 

field and porous matrix on Newtonian and non-Newtonian fluids. The effect of porosity was 

examined by several authors [16-20]. The effects of magnetic field, heat generation/absorption on 

flow and heat transfer of viscous electrically conducting fluids over several solid surfaces are 

examined by authors [21-24]. 

Nayak et al. [25] have considered third grade fluid as coating material in wire coating 

analysis and investigated there the MHD flow and heat transfer with temperature dependent 

viscosity. However, they have not investigated the effects of porous matrix and heat 

generation/absorption in their study. The objective of the present study is to analyze the wire 

coating process where a coating material modeled as third grade fluid such as melt polymer. The 

study is carried out considering constant viscosity and temperature dependent viscosity by using 

Reynolds and Vogel’s models.  

The novelty of the present study comprises the following aspects:  

1. The porous matrix is included because it acts as an insulator due to which the flow 

and heat transport processes greatly prevents heat loss and accelerates the process 

of cooling/heating as the case may be serving as a heat exchanger. Also the 

permeability of a porous medium reduces the flow instability.  

2. Heat generation/absorption is included because it controls the heat transfer rates in 

the thermal boundary layer appreciably.    

The method of solution used here is fourth order Runge-Kutta method associated with 

shooting technique. The effects of non-Newtonian parameter, Reynolds model viscosity parameter, 

Vogel’s model viscosity parameter, magnetic parameter, permeability parameter, heat 

generation/absorption parameter and Brinkman number on velocity and temperature distributions 

are presented. 
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2. Formulation of the Problem 

The schematic diagram of the flow geometry is shown in Fig. 2. The wire of radius wR  is 

extruded along the central line with velocity wU , temperature w  in a bath of third grade fluid such 

as molten polymer like polyvinyl chloride (PVC) in a porous medium inside a stationary pressure 

type die of finite length L  having radius dR  and temperature d . The fluid is acted upon by a 

constant pressure gradient 
dp

dz
 in the axial direction and a transverse magnetic field of strength 0B . 

The magnetic field is perpendicular to the direction of incompressible flow. The magnetic 

Reynolds number is taken to be small enough so that the induced magnetic field can be neglected. 

Thus, in the present set up, the Lorentz force comes into play affecting the coating process. 

 

 

 

 

  

 

 

 

 

     

Fig. 2 Wire coating process in a porous medium in a pressure type die.  

The die is filled with an incompressible third grade fluid. The wire and die are concentric 

and the co-ordinate system is chosen at the center of the wire in which r  is taken perpendicular to 

the direction of the fluid flow and z-axis is along the flow. The flow is considered steady, laminar 

and axisymmetric.  

The design of wire coating dies is of primary importance since it greatly affects the quality 

of the final product. The pressure type die is considered because within this die the melt meets the 

wire where a complex flow field exists and its surrounding is necessary for the design of better 

dies with optimum performance. Let us avoid excessive shear stresses at the wire which may lead 

to elongation or frequent breakage of the wire during coating operation and also excessive wall 

shear stress which may result in uneven and rough extrudate coating. 

Assuming that no-slip boundary conditions are imposed on the moving wire and stationary 

die wall in the die region between the contact of the melt with the wire and die exit. 

 With the above mentioned frame of reference and assumptions the fluid velocity, extra 

stress tensor and temperature field are considered as  

  0 0q , ,w( r ) , S S( r ), ( r )           (1) 

Boundary conditions are: 
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For third grade fluid, the extra stress tensor S is defined as 

   2

1 1 2 2 1 1 3 2 1 2 2 1 3 2 1rS A A A A A A A A t A A                (3) 

in which 1 2 1 2 3, , , ,      are the material constants and 1 2 3A ,A ,A  are the kinematic tensors. 

 1

TA L L            (4) 

 1
1 1 2 3T n

n n n

DA
A A L LA , n , ,

Dt


            (5) 

where the superscript T denotes the transpose of the matrix. 

The basic equations governing the flow of an incompressible fluid are: 

 0.q            (6) 

 
*

p

Dq q
p F J B

Dt K
     




       (7) 

  2

0p w d

D
C k Q J

Dt
     


           (8) 

where q  is the velocity vector, 
D

Dt
 denotes substantial acceleration and 

0Q  is the rate of 

volumetric heat generation/absorption and 
dJ  is the Joulean dissipation term. 

In the equation of motion (7) a body force J B  per unit volume of electromagnetic origin 

appears due to the interaction of the current and the magnetic field. The electrostatic force due to 

charge density is considered to be negligible. A uniform magnetic field of strength of 0B  is 

assumed to be applied in the positive radial direction normal to the wire i.e., along z-axis. Hence 

the retarding force per unit volume acting along z-axis is given by 

 2
0(0,0, )J B B w           (9) 

Using the velocity field (1), the continuity equation (6) is satisfied identically and the non 

zero components of extra tensor S from equation (3) are given by 

  
2

1 22rr

dw
S

dr
 

 
   

 
        (10) 

 

2

2zz

dw
S

dr


 
  

 
         (11) 

 
3

2 32rz

dw dw
S

dr dr
  

 
    

 
       (12) 

Substituting the velocity field and equations (9) – (12) in the equation of balance of momentum 

(7), we obtain 

 
2

1 2

1
2

p d dw
r

r r dr dr
 

    
    

    

       (13) 

0
p







          (14) 

  3

2 3 2

0

21
*

p

p d dw d dw w
r r B w

z r dr dr r dr dr K

     
             

  
     (15) 
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Equation (15) represents the flow due to pressure gradient. After leaving the die, there is 

only drag of the wire. So the pressure gradient in the axial direction is taken to be zero. Hence, 

equation (15) becomes 

  3

2 3 2

0

2 1
0

*

p

d dw d dw w
. r r B w

r dr dr r dr dr K

     
            

  
     (16) 

and the energy equation (8) becomes 

   
2 42

2 2

2 3 0 02

1
2 0w

d d dw dw
k Q B w

dr r dr dr dr

     
            

    
         (17) 

2.1 Constant Viscosity  

Introducing the dimensionless parameters 

0 2 3

2 2 2 2
2 0 01

w

w w d w

d w w w
p *

w w p

r w
r* , w* , * ,

R U

R B R R Q R
, M ,K , Q

R U K k

 
   

 






 
      


    



     (18) 

The system of equations (2), (16) and (17) after dropping the asterisks, become 

 
2 32 2

2

02 2
2 3 0p

d w dw d w dw dw
r r M K wr

dr dr dr dr dr

    
         

     

    (19) 

   1 1 0w and w            (20) 

2 42
2 2

02

1
2 0r r r

d d dw dw
B B Q B M w

dr r dr dr dr

   
        

   

 
      (21) 

   1 0 and 1              (22) 

where the Brinkman number (
rB ) and non-Newtonian parameter (

0 ) are given by 

 
 

2

w
r

d w

U
B

k






 
 and 0

0 2

2

*

w

w

R

U


 
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 






 respectively.  

(i) Numerical Solution 

The Runge-Kutta method has been used to solve equations (19) and (21) with boundary 

conditions (20) and (22). These equations are reduced to system of first order differential equations 

since for the equations of higher order the value at r  (thickness of boundary layer) is not 

available. Therefore, the shooting method is used to solve the boundary value problem. The 

physical and computation domains are finite. For computational purpose we have taken 2  . 

2.2 Variable Viscosity/ Temperature dependent Viscosity 

2.2.1 Reynolds Model 

In this case, Reynolds model is used to account for the temperature dependent viscosity. 

For Reynolds model, the dimensionless viscosity is 
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 0 01exp m m                (23) 

which can be used for variation of viscosity with temperature where m is the viscosity parameter. 

Non-dimensional momentum and energy equations with boundary conditions omitting 

asterisks are 
2 32 2

0 02 2
(1 ) 2 3p

d w dw d w dw dw
m r K wr r

dr dr dr dr dr

      
            

       

2

0 0
d dw

m M wr
dr dr


    (24) 

 (1) 1w  and (2) 0w           (25) 

 

2 42
2 2

0 02

1
(1 ) 2 0r r r

d d dw dw
m B B Q B M w

dr r dr dr dr

     
           

   
  (26) 

 1 0  and (2) 1           (27) 

The non-dimensional parameters are 

0 2 3

2 2 2 2
* 20 0 0*
0 *

0 00
2
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w d

w w d w w

w w w
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r w

R U R

U B R R
B M K

k U KR

U

 
            




   
      

    
     

  (28) 

where 0  is a reference viscosity.  

Numerical Solution 

Equations (24) and (26) with boundary condition (25) and (27) are solved numerically applying 

Runge-Kutta method as mentioned in constant viscosity case. 

2.2.2 Vogel’s Model 

In this case, the temperature dependent viscosity is taken as 

0 exp
'

w

D

B

 
    

  
        (29) 

Using expansion, we have 

1 2
1

'

D

B

 
     

 
         (30)  

where 1 0 exp
'

w

D

B

 
    

 
 and D,B'  are viscosity parameters associated with Vogel’s model.  

So the non-dimensional momentum and energy equations with boundary conditions 

omitting asterisk are 

2 32 2
21

1 02 2 2 2
1 2 3 0

' '
p

DD d w dw d w dw dw d dw
r K wr r M wr

B dr dr dr dr dr B dr dr

          
                   

           

 (31) 

(1) 1w   and (2) 0w            (32) 
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2 42
2 2

1 02 2

1
1 2 0

'
r r r

d d D dw dw
B B Q B M w

dr r dr B dr dr

       
             

     
   (33) 

(1) 0   and (2) 1            (34) 

Numerical Solution 

The numerical solutions of equations (31) and (33) with the boundary condition (32) and (34) can 

be obtained with 0D b . During the numerical computation by Runge-Kutta method we have 

assigned different values to viscosity parameter ( 1 ) and the values of 'B  and b are assigned as 

'B  = 0.2 and b = 0.5. The numerical solutions of velocity and temperature distributions are 

presented through graphs. 

3. Results and Discussion 

The following discussion presents the comparative case study of constant viscosity and 

variable viscosity comprising of Reynolds model and Vogel’s model related to wire coating 

process using melt polymer satisfying third grade fluid model in a pressure type die. The Runge-

Kutta method with shooting technique has been applied to solve the governing equations. 

The effects of various pertinent parameters such as non-Newtonian parameter
0 , 

permeability parameter pK , Reynolds model viscosity parameter m, Vogel’s model viscosity 

parameter 1 , heat generation/absorption parameter Q and Brinkman number 
rB , are discussed. 

The flow and heat transfer phenomena occurring inside the wire coating dies determine the 

quality of the coated wire produced. 

3.1 Case of Constant Viscosity 

Fig.3 delineates the effects of permeability parameter ( pK ) and non-Newtonian parameter 

(
0 ) on the velocity field. It is noticed that the permeability parameter ( pK ) decreases the velocity 

field in case of both Newtonian and non-Newtonian fluids in absence of heat 

generation/absorption. It is also further noticed that an increase in non-Newtonian parameter, 

keeping the permeability parameter fixed, leads to increase the velocity at all points of the flow 

domain in absence of heat generation/absorption. Hence the permeability parameter contributes to 

slow down the velocity where as non-Newtonian parameter characterizing the melt polymer (third 

grade fluid) accelerates it.  

Fig. 4 exhibits the temperature distribution in case of third grade fluid when non-

Newtonian parameter, 
0 0.1   in presence of Joule heating. Since the curves for 0pK   and 

2pK   coincide, the effect of permeability parameter is not significant irrespective of low/high 

values of Brinkman number (
rB ). However, an increase in 

rB  leads to increase the temperature at 

all points significantly in the absence of heat generation/absorption. Hence, it is remarked that in 

the process of wire coating, the Brinkman number, the relative measure of viscous heating with 

heat conducted, enhances the temperature significantly at all points whereas porous matrix has no 

remarkable contribution. 

 



113 
 

             
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

w
(r

)

 

 


0
 = 0


0
 = 0.2


0
 = 0.1

Kp = 0

Kp = 2

 
Fig. 3 Velocity distributions (Constant viscosity) showing the effect of 

0  and 
pK  for 

5, 0.5, 2, 0rB M R Q    . 
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Fig. 4 Temperature distributions (constant viscosity) showing the effect of 

rB  and pK  for  

0 0.1, 0.2, 2, 0M R Q     . 

3.2 Case of Variable Viscosity  

3.2.1 Reynolds Model 

Fig. 5 shows the velocity distribution when the Brinkman number, viscosity parameter, 

magnetic parameter and heat generation/absorption parameter are set to fixed values. It is observed 

that the non-Newtonian parameter 
0  is to increase the velocity both in the presence or absence of 

porous matrix but the reverse effect is observed in case of porous matrix. Thus, it is to note that 

non-Newtonian property of the fluid is favourable for enhancing the velocity in conjunction with 

temperature dependent variable viscosity in absence of heat generation/absorption.  

Fig.6 delineates the velocity variation for different values of viscosity parameter and 

permeability parameter. It is seen that viscosity parameter enhances the velocity at all points in the 

presence/absence of porous matrix without heat generation/absorption.  

From Fig. 7 it is noticed that increase in magnetic field strength contributes to slow down 

the velocity in entire flow domain in the absence of heat generation/absorption. 
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Fig. 5 Velocity distributions (Reynolds model) showing the effect of 

pK  and 
0 for 10rB  ,  

10, 1, 2, 0m M R Q    . 
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Fig. 6 Velocity distributions (Reynolds model) showing the effect of m and  

pK  for 10, 2rB R  , 
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Fig. 7  Velocity distributions (Reynolds model) showing the effect of M  for  
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From Fig. 8 it is observed that for a fixed value of viscosity parameter, magnetic parameter 

and heat generation/absorption parameter, the temperature increases with an increase in Brinkman 

number in the presence as well as absence of the porous matrix associated with Joule heating. It is 

also observed that an increase in porous matrix leads to higher temperature within the layers           

r < 1.6, thereafter, the temperature decreases. This is because the resistive force offered by porous 

matrix is dominated by the boundary surface effects.  

Fig. 9 illustrates that an increase in magnetic field leads to higher temperature within the 

layers r < 1.6 thereafter, the temperature decreases. This scenario is due to the fact that the 

boundary surface effect overrides the effects of magnetic field.  
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Fig. 8  Temperature distributions (Reynolds Model) showing the effect of 

pK   and 
rB for 

0 0.1  , 

   10, 0.5, 2, 0m M R Q    . 
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Fig. 9  Temperature distributions (Reynolds Model) showing the effect of M for 

0 0.1  ,  

10, 2, 2, 4, 0p rm K R B Q     . 

Fig. 10 displays the effect of heat generation/absorption parameter on temperature 

distribution. It shows that heat generation in thermal boundary layer causes the temperature to rise 

whereas the heat absorption in thermal boundary layer results in decreasing temperature. 
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Fig. 10  Temperature distributions (Reynolds Model) showing the effect of Q and 

pK  for 
0 0.1  , 

  10, 0.5, 2, 2rm M R B    . 

3.2.2 Vogel’s Model  

Fig. 11 displays two layer velocity distributions, one for conducting fluid and the other one 

for non-conducting fluid, indicating decelerating effects offered by the resistive force of porous 

matrix in the absence of heat generation/absorption. Another interesting aspect is the occurrence of 

point of inflexion vis-à-vis point of intersection in the middle of the annular region which recedes 

slightly towards r = 1.0. This indicates that transition sets in little ahead in presence porous matrix. 

It is also evident that increase in viscosity parameter 
1( )  accelerates the velocity in the region  

1.0 < r < 1.6 for presence/absence of porous matrix. On the other hand, reverse effect is observed 

after words. This shows that near the surface of the wire, velocity gets accelerated irrespective of 

porous matrix. It is worth mentioning here that in case of constant viscosity as well as variable 

viscosity (Reynolds model), the porous matrix decreases the velocity throughout the flow field. 

Again comparing the effect of variable viscosity in Reynolds model and Vogel’s model it is found 

that viscosity parameter accelerates the velocity throughout the case of Reynolds model where as it 

is confined to 1 < r <1.6 in case of Vogel’s model irrespective of the effect of porosity. 

The effect of magnetic field is similar to the effect of porosity as shown in Fig. 12. 

However, a striking feature is observed that the variation of viscosity parameter is prominent 

irrespective magnetic field. Also it is observed that the variation of viscosity is significant in 

presence/absence of magnetic field than that in presence/absence of porous matrix. This indicates 

that the resistance offered by the Lorentz force due to the presence of magnetic field overrides the 

resistance offered by the porous matrix. Another interesting feature is that 0  imposes a 

transition in motion within the same layer (r < 1.6) of melt polymer in absence/presence of 

magnetic field. 

Fig. 13 shows that an increase in Brinkman number increases the velocity in the absence of 

porous matrix, whereas in the presence of porous matrix, the effect of 
rB  is not significant when 

1 1.25r   but thereafter, the decrease in velocity occurs with an increase in 
rB , i.e. with the rise 

of viscous heating. One aspect is very much clear from Fig. 15 that viscous heating ( 0rB  ) with 

or without porous matrix has a distinct role to play in reducing the velocity as well as developing a 

transition state on fluid property in the absence of heat generation/absorption. 

Fig.14 shows the effects of non-Newtonian parameter
0 . It is seen that an increase in non-

Newtonian parameter increases the velocity in the region 1 < r < 1.45 both in the presence or 
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absence of porous matrix, after words, it decreases. Thus, it is concluded that non-Newtonian 

property of fluid enhances the velocity of the coating material near the surface of the wire then it 

decreases but an increase in permeability parameter ( pK ) with higher non-Newtonian parameter 

reduces the velocity throughout the annular region. Further it is remarked that for higher values of 

non-Newtonian and permeability parameters the velocity is reduced significantly almost at all 

points.  

It is remarkable to note from Fig. 15 that increase of variable viscosity and viscous heating 

cause thermo-transitions to take place in the absence/presence of porous matrix in association with 

Joule heating. The effect of porous matrix with viscous heating or variable viscosity enhances the 

temperature just immediate from the surface of the wire, but thereafter the reverse effect is 

observed. The same thermal characteristics are visualized in case of magnetic field, however, with 

moderately greater magnitude as shown in Fig. 16. 

It is important to note that the flow instability is well marked from Figs 11-14 in case of 

Vogel’s model and slightly from Fig 8 in case of Reynolds model. This observation coincides with 

Nhan-Phan-Thien [26]. As pointed, the non-linearity in the constitutive equations makes 

viscoelastic flows full of instabilities such as in the flows of extrusion dies.  

Figs. 17 and 18 delineate the temperature distribution showing the effects of Brinkman 

number with permeable parameter as well as magnetic parameter in the absence of heat 

generation/absorption. The point of thermo-transition occurs in the middle of the annular zone. The 

effects of porous matrix, magnetic parameter and Brinkman number are to increase the 

temperature in the first half in all the cases, the reverse effect is observed. Thus it is concluded that 

viscous heating ( )rB and non-Newtonian property of melt polymer are favourable in escalating the 

fluid temperature in the layers near the surface of the wire and it is counterproductive near the 

inner surface of the die.  

Fig. 19 portrays the effect of heat generation/absorption parameter on temperature distribution by 

setting the fixed values of 
0 , , ,p rK M B  and 

1 . It shows that heat generation in thermal boundary 

layer causes the temperature to rise leading to increase in heat transfer rate and hence enhances the 

thermal boundary layer thickness whereas the opposite effect is observed in case of heat 

absorption. 
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Fig. 11  Velocity distributions (Vogel’s model) showing the effect of 

pK  and 
1  for 

15, 2, 2,rB R M    
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Fig. 12  Velocity distributions (Vogel’s model) showing the effect of M and 

1  for 

  15, 2, 2,r pB R K    
0 0.1, 0Q   . 
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Fig. 13  Velocity distributions (Vogel’s model) showing the effect of 

rB  and 
pK  for 

  
0 0.05, 2, 2M R    , 

1 2, 0Q   . 
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Fig. 14  Velocity distributions (Vogel’s model) showing the effect of 

0  and pK  for  

 
12, 2, 2M R    , 15, 0rB Q   . 
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Fig.15  Temperature distributions (Vogel’s model) showing the effect of 

1  and 
pK  for  

0 0.05, 1, 2M R    , 15, 0rB Q  . 
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Fig.16  Temperature distributions (Vogel’s model) showing the effect of 

1  and M for 

  0 0.05, 2, 2,pK R     15, 0rB Q  . 
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Fig. 17 Temperature distributions (Vogel’s model) showing the effect of 

rB  and pK  for 

  
0 0.05, 1, 2M R    , 

1 2, 0Q   . 
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Fig. 18 Temperature distributions (Vogel’s model) showing the effect of 

rB  and M for 

 0 0.05, 2, 2,pK R     
1 2, 0Q   . 
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Fig. 19 Temperature distributions (Vogel’s model) showing the effect of Q for 

 0 0.05, 2, 1, 15,p rK M B      
1 2, 2R   . 

4. Conclusion 

4.1 Case of Constant Viscosity 

1. Porous matrix contributes to slow down the velocity whereas non-Newtonian parameter 

characterizing the melt polymer (third grade fluid) accelerates it. As the velocity of coating 

fluid is an important design requirement, porous matrix and non-Newtonian characteristics 

of fluid may be used as controlling devices for the required quality of the wire-coating.  

2. In the process of wire coating, the Brinkman number, which is the relative measure of 

viscous heating with heat conducted, enhances the temperature significantly at all points 

where as porous matrix has no remarkable contribution. 

4.2  Case of Variable Viscosity  

Reynolds Model 

3. Non-Newtonian property of the fluid is favourable for enhancing the velocity in conjunction 

with temperature dependent variable viscosity. 
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4.  On comparison with constant viscosity case, it is remarked that effects of non-Newtonian 

property of the fluid and porosity remain unaltered but the deceleration of fluid velocity is 

significant in case of temperature dependent variable viscosity. 

5. Heat generation in thermal boundary layer leads to temperature rise whereas the heat 

absorption in thermal boundary layer results in decreasing temperature. 

Vogel’s Model 

6.  Vogel’s model contribute two layer velocity distribution, one for conducting fluid and the 

other one for non-conducting fluid, indicating decelerating effects due to resistive force 

offered by magnetic field as well as porous matrix. Another interesting aspect is the 

occurrence of point of inflexion vis-à-vis point of intersection in the middle of the annular 

region. 

7.  It is worth mentioning here that in case of constant viscosity as well as variable viscosity 

(Reynolds model), the magnetic field as well as porous matrix decrease the velocity 

throughout the flow field. Again comparing the effect of variable viscosity (Reynolds 

model) with Vogel’s it is found that viscosity parameter accelerates the velocity throughout 

the case of Reynolds model whereas it is confined to 1 1.6r   (Vogel’s model) 

irrespective of the effect of porosity. 

8. The effect of variable viscosity is decisive and significant in enhancing the temperature 

throughout the flow region under investigation. While comparing with the Reynolds model 

it is revealed that the fluid gets heated with porous matrix and viscosity parameter in both 

the cases. Both the models have same effect in response to porous matrix by increasing the 

temperature nearer to the wire-surface and having a transition in the middle of the annular 

region. 

9. The viscoelastic flows are full of instabilities such as in the flows of extrusion dies as 

claimed by Nhan-Phan-Thien is also observed in the present study. 

10. Heat generation in thermal boundary layer causes the temperature to rise leading to 

increase in heat transfer rate and hence enhances the thermal boundary layer thickness 

whereas the opposite effect is observed in case of heat absorption. 
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